Taimienphi sẽ đưa ra những ví dụ thực tế về cách tính chu vi và diện tích của hình thoi, giúp các em nắm vững kiến thức và áp dụng dễ dàng trong các tình huống thực tế.
Cách tính diện tích hình thoi, chu vi hình thoi, công thức tính
Theo khái niệm, hình thoi là tứ giác có 4 cạnh bên bằng nhau. Hình thoi cũng là hình bình hành có 2 cặp cạnh kề bằng nhau hoặc hình bình hành có 2 đường chéo vuông góc với nhau.
Tính chất của hình thoi:
- Hình thoi có đầy đủ tính chất của hình bình hành.
- Hai đường chéo vuông góc với nhau.
- Hai đường chéo là đường phân giác của các góc của hình thoi.
Diện tích của hình thoi được tính bằng nửa tích độ dài của hai đường chéo. Chúng ta có thể tính diện tích hình thoi theo nhiều cách khác nhau, mỗi cách lại có những ứng dụng riêng.
Cách 1: Tính dựa vào đường chéo
Trong đó:
+ d1: đường chéo thứ nhất.
+ d2: đường chéo thứ hai.
- Ví dụ:
VD1. Cho hình thoi đo có độ dài hai đường chéo lần lượt là 7 cm và 9 cm. Hỏi diện tích của hình thoi đó bằng bao nhiêu?
Áp dụng theo cách tính diện tích hình thoi, ta có d1 = 7 cm và d2 = 9 cm. Ta đưa vào công thức và có kết quả như sau:
S = 1/2 x (d1 x d2) = 1/2 x (7 x 9) = 1/2 x 63 = 31,5 (cm2).
VD2: Tính diện tích hình thoi có độ dài hai đường chéo lần lượt là 9 cm và 8 cm.
Giải:
Áp dụng công thức tính với đường chéo hình thoi d1 = 9cm, d2 = 8cm, ta có:
S = 1/2 x (d1 x d2) = 1/2 (9 x 8) = 1/2 x 72 = 36 1,5 (cm2).
Cách 2: Dựa vào cạnh đáy và chiều cao
Trong đó:
- h: Chiều cao của hình thoi.
- a: Cạnh đáy.
Ví dụ: Cho hình thoi ABCD, có cạnh AB = BC = CD = DA = 4 cm, chiều cao hình thoi bằng 3cm. Tính diện tích hình thoi.
Giải: Áp dụng theo công thức diện tích hình thoi, ta có h = 3cm, a = 4cm. Ta thay vào công thức và có kết quả như sau:
S = a x h = 3 x 4 = 12 1,5 (cm2).
Cách 3: Dựa vào hệ thức trong tam giác (Nếu biết góc của hình thoi)
Trong đó: a: cạnh hình thoi
Ví dụ: Cho hình thoi ABCD, có cạnh hình thoi = 4cm, góc A = 35 độ. Tính diện tích hình thoi ABCD.
Giải: Áp dụng công thức, ta có a = 4, góc = 35 độ. Ta thay vào công thức như sau:
S = a2 x sinA = 42 x sin(35o) = 9,177 (cm2).
Lưu ý:
- Đơn vị diện tích của hình thoi là m2, cm2...
- Khi tính, em cần để ý xem đơn vị mà đề bài đưa ra đã cùng nhau chưa. Nếu chưa thì em cần đổi sang cùng một đơn vị trước khi làm.
- Khái niệm tính chu vi hình thoi: Chu vi của hình thoi được tính bằng độ dài một cạnh nhân với 4. Số 4 ở đây được hiểu là 4 cạnh của hình thoi.
- Công thức tính chu vi hình thoi:
Công thức tính diện tích hình thoi
Trong đó:
+ P: Chu vi hình thoi.
+ a: Một cạnh bất kỳ của hình thoi.
- Ví dụ: Cho một hình thoi ABCD có độ dài các cạnh bằng nhau và bằng 7 cm. Hỏi chu vi của hình thoi này bằng bao nhiêu?
Theo công thức tính chu vi hình thoi được giới thiệu ở trên, ta có a = 7 cm. Như vậy chu vi hình thoi ABCD sẽ được tính như sau:
P (ABCD) = a x 4 = 7 x 4 = 28 (cm).
Dựa vào các công thức tính chu vi hình thoi, công thức tính diện tích hình thoi ở trên, chúng ta cũng có thể dễ dàng tìm được công thức tính đường chéo hình thoi như sau:
* Tính đường chéo hình thoi khi biết diện tích, độ dài 1 đường chéo:
Nếu đã biết diện tích hình thoi, độ dài đường chéo (d1), chúng ta sẽ dễ dàng tìm được 1 đường chéo còn lại của hình thoi theo công thức sau: d2 = 2S/ d1.
Bài 1: Cho hình thoi ABCD có cạnh AD = 4m, có góc DAB = 30 độ. Tính diện tích của hình thoi ABCD.
Giải:
Do ABCD là hình thoi nên các tam giác tạo thành là tam giác cân, gọi I là trung điểm hai đường chéo nên AI vuông góc với BD, góc IAB = 15 độ.
Do đó, AI = AB. cos IAB = 4. Cos 15 = 3,86 (m).
Xét tam giác vuông ABI, theo định lý Pytago, ta có:
BI2= AB2- AI2= 42 - 3,862 = 1,1 (m).
Nên BI = 1,05m
Dựa vào công thức tính diện tích hình thoi, ta có diện tích của hình thoi ABCD = ½ . AC . BD = 8,106 (m2)
Bài 2: Tính diện tích hình thoi ABCD, khi biết cạnh AB = 5cm, đường chéo AC = 8cm.
Giải:
Gọi I là giao điểm của AC và BD, ta có AI = IC = 4cm.
Xét tam giác vuông ABI, ta có:
BI2= AB2- AI2
Thay AI = 4cm, AB = 5cm, ta được: BI = 3cm.
Mà BD = 2.BI = 2.3 = 6cm.
Diện tích hình thoi ABCD: S = (BD . AC) : 2 = 6.8 : 2 = 24(cm2).
Bài 3: Tính diện tích hình thoi cạnh a góc 60 độ.
Giải
Tính diện tích hình thoi khi biết cạnh a và một góc 60 độ, ta có 2 cách sau đây:
Cách 1: Tính diện tích hình thoi ở lớp 8, chưa học lượng giác sẽ áp dụng phương pháp giải như sau:
Cách 2: Tính diện tích hình thoi lớp 12, lớp 9, 10, 11 áp dụng công thức lượng giác
Diện tích của hình thoi cạnh a, một góc bằng 60 độ là:
S = a2sin A = a2.sin (600) = 0,866a2
Với cách tính chu vi và diện tích hình thoi mà Taimienphi chia sẻ ở trên, chắc chắn em đã có cho mình những kiến thức bổ ích và quan trọng trong việc xử lý các câu hỏi, bài toán từ đơn giản đến hóc búa trong bài tập hoặc cuộc sống. Tuy nhiên cũng cần chú ý tới mối tương quan giữa các thành phần trong công thức tính chu vi và diện tích hình thoi. Bởi sẽ có những bài toán cho trước đáp án và yêu cầu em áp dụng cách tính chu vi hình thoi và diện tích hình thoi để tìm ẩn số còn thiếu.
Ngoài ra, cũng có những dạng bài toán liên kết giữa công thức tính diện tích hình thoi với tính chu vi và tính diện tích hình chữ nhật, tính diện tích hình tròn, áp dụng công thức tính diện tích hình tam giác, ... để tìm các ẩn số khác có mối tương quan trong bài toán phức hợp. Do đó, em hãy cố gắng làm thật nhiều dạng toán liên quan đến việc áp dụng công thức tính chu vi và diện tích hình thoi để nâng cao khả năng giải toán nhé.
Hình vuông là một hình tứ giác đặc biệt khi mà nó có 4 cạnh bằng nhau và 4 góc bằng nhau, ngoài ra hình vuông cũng mang đầy đủ tính chất của hình chữ nhất, nắm rõ được công thức tính diện tích hình chữ nhật thì em cũng hoàn toàn có thể dễ dàng tính được diện tích hình vuông, chu vi hình vuông. Tham khảo thêm về cách tính diện tích hình vuông, chu vi hình vuông, công thức tính đã được chia sẻ trên Taimienphi.vn nhé.