Đề bài:
Hãy tính số trung bình cộng của dấu hiệu ở bài tập 9.
Trả lời:
Đề bài:
Nghiên cứu "tuổi thọ" của một loại bóng đèn, người ta đã chọn tùy ý 50 bóng và bật sáng liên tục cho tới lúc chúng tự tắt. "Tuổi thọ" của các bóng (tính theo giờ) được ghi lại ở bảng 23 (làm tròn đến hàng chục) :
a) Dấu hiệu cần tìm hiểu ở đây là gì và số các giá trị là bao nhiêu ?
b) Tính số trung bình cộng.
c) Tìm mốt của dấu hiệu.
Trả lời:
Đề bài:
Quan sát bảng "tần số" (bảng 24) và cho biết có nên dùng số trung bình cộng làm "đại diện" cho dấu hiệu không? Vì sao?
Trả lời:
Đề bài:
Theo dõi thời gian làm một bài toán (tính bằng phút) của 50 học sinh, thầy giáo lập được bảng 25:
a) Tính số trung bình cộng.
b) Tìm mốt của dấu hiệu.
Trả lời:
Đề bài:
Đo chiều cao của 100 học sinh lớp 6 (đơn vị đo: cm) và được kết quả theo bảng 26:
a) Bảng này có gì khác so với những bảng "tần số" đã biết?
b) Ước tính số trung bình cộng trong trường hợp này.
Trả lời:
a) Bảng này có khác so với bảng tần số đã học.
Các giá trị khác nhau của biến lượng được "phân lớp" trong các lớp đều nhau (10 đơn vị) mà không tính riêng từng giá trị khác nhau.
b) Số trung bình cộng
Để tiện việc tính toán ta kẻ thêm vào sau cột chiều cao là cột số trung bình cộng của từng lớp: sau cột tần số là cột tích giữa trung bình cộng.
(Nếu có bạn thắc mắc là tại sao lại có được số liệu ở cột Trung bình cộng ở mỗi lớp. Đó là vì ta lấy tổng chiều cao đầu + chiều cao cuối của mỗi lớp, sau đó chia cho 2. Ví dụ: (110 + 120)/2 = 115)
Đề bài:
Số cân nặng (tính bằng kilôgam) của 120 em của một trường mẫu giáo ở thành phố A được ghi lại trong bảng 27:
Hãy tính số trung bình cộng (có thể sử dụng máy tính bỏ túi).
Trả lời:
Bảng tần số về số cân nặng của 120 em của 1 trường mẫu giáo: